

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP) BSc CHEMISTRY

Programme	B.Sc Chemistry								
Course Title	BASIC INORGANIC AND GREEN CHEMISTRY								
Type of Course	MINOR								
Semester	I								
Academic Level	100-199								
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours				
		per week	per week	per week					
	4	3	-	2	75				
	Concept of atom and	molecule							
Pre-requisites	Constituents of the at	om, Rutherfo	ord's model o	of the atom.					
	Periodic table and cla	ssification of	f elements to	different bloc	ks,				
	Basic knowledge of c	_l ualitative an	d quantitative	e analysis					
	Titration and use of in	ndicators							
Course Summary	This course is intended	ed to provide	basic knowl	edge in inorga	anic chemistry and				
	nanochemistry. The s	tudent gets a	n understandi	ng of the Bohr	model of the atom				
	and the modern quant	um mechanio	cal model of t	he atom throu	gh the first module				
	of this course. Differe	ent types of c	hemical bond	ding are also in	ncluded in the first				
	module. General pro	perties of the	atom and th	e variation of	these properties in				
	the periodic table are	also discusse	ed in this cour	se. Basic prin	ciples of analytical				
	chemistry are include	ed in the thir	d module of	this course wh	nich includes acid-				
	base titration, redox	titration, cor	nplexometric	titration, and	l mixture analysis.				
	This course also tries	• .	-	•	• •				
	and applications. To	master the la	iboratory skil	lls acid-base t	itration, and redox				
	titration experiments	are incorpora	ated into this	course structu	re.				

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	To Understand the structure of atoms			Instructor-
	and rules regarding the arrangement	U	С	created exams
	of electrons in an atom.			/ Quiz
CO2	To discuss the chemical bonding,			Class test
	theories of chemical bonding and	U	F	/Assignment /
	predict molecular shapes using VSEPR			Quiz
	theory			

CO3	To Comprehend periodic properties, understand laws and the concept of the modern periodic table, and its implications	U	F	Class test /Assignment / Quiz
CO4	To Master the principle of volumetric analysis, understand the separation of cations in qualitative analysis	U	С	Class test /Assignment / Quiz
CO5	To Grasp the importance of green chemistry, its principles and applications, including alternative energy sources	U	F	Class test /Assignment / Quiz
CO6	To Perform different titrations and execute open-ended experiments safely and effectively	Ap	P	Lab work

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Detailed Syllabus:

Module	Unit	Content	Hrs	Mark
		Atomic structure and Chemical Bonding	15	34
	1	Bohr atom model, merits and its limitations, Heisenberg uncertainty principle, Louis de Broglie's matter waves – dual nature.	2	
	2	Schrödinger wave equation (Mention the equation and the terms in it), - Concept of orbitals, comparison of orbit and orbital.	2	
	3	Quantum numbers and their significance	1	
I	4	Pauli's Exclusion principle - Hund's rule of maximum multiplicity - Aufbau principle - Electronic configuration of atoms.	2	
	5	Chemical Bonding: Introduction – Type of bonds. Ionic bond, Covalent bond, Coordinate bond, and hydrogen bond (Intermolecular and intramolecular hydrogen bond with examples).	2	
	6	VSEPR theory: Shapes of BeCl ₂ , BF ₃ , CH ₄ , NH ₃ , H ₂ O, PCl ₅ , SF ₄ , ClF ₃ , XeF ₂ , SF ₆ , IF ₅ , XeF ₄ , IF ₇ and XeF ₆ . NH ₄ +, SO ₄ ² -	2	
	7	Valence Bond theory - Hybridisation involving s, p and d orbitals: SP (acetylene), SP ² (ethylene), SP ³ (CH ₄), SP ³ d (PCl ₅), SP ³ d ² (SF ₆)	2	

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

		,		
	8	Molecular Orbital theory: LCAO – Electronic configuration of H ₂ , B ₂ , C ₂ , N ₂ , O ₂ and CO – Calculation of bond order and its applications.(Bond length and	2	
		bond strength), Comparison of VB and MO theories		4.0
		Periodic Properties	5	10
	9	Name and symbol of elements, Law of triads, octaves, X-ray studies of Henrry Mosley, Mosleys periodic law - Modern periodic law - Long form periodic table.	2	
II	10	Periodicity in properties: Atomic and ionic radii, Ionization enthalpy - Electron affinity (electron gain enthalpy) – Electronegativity, valency, Oxidation number (Representative element), metallic and non-metallic character, inert pair effect,	3	
		Analytical Chemistry	15	34
	11	Atomic mass - Molecular mass - Mole concept - Molar volume - Oxidation and reduction - Equivalent mass.	2	
	12	Methods of expressing concentration: Molality, molarity, normality, ppm, and mole fraction.	2	
	13	Dilution formula, Theory of volumetric analysis – Acidbase, redox, and complexometric titrations:	3	
Ш	14	acid-base, redox, and complexometric indicators. Double burette method of titration: Principle and advantages.	2	
	15	Principles in the separation of cations in qualitative analysis	2	
	16	Common ion effect and solubility product and its applications in qualitative analysis –	2	
	17	Microanalysis and its advantages. Accuracy & Precision (mention only).	2	
		Green Chemistry	10	20
	18	Introduction- Definition of green Chemistry, need of green chemistry, Twelve principles of Green Chemistry with their explanations.	3	
IV	19	Applications of green chemistry in daily life. Green solvents— supercritical fluids, water as a solvent for organic reactions, ionic liquids (Brief explanation with example).	2	
	20	Alternative sources of energy: use of microwaves and ultrasonic energy.	2	
	21	Strengthening/ development of analytical techniques to prevent and minimize the generation of hazardous substances in chemical processes.	2	

	22	Selection of starting materials; avoidance of		
		unnecessary derivatization.	1	
		Basic Inorganic Chemistry Practical:	30	
		Acid-Base titrations and Redox titrations		
		General Instructions		
		For weighing electronic balance must be used. For		
		safety coat, gloves, shoes and goggles in the laboratory.		
		A minimum of 7 experiments must be done. Out of the		
		seven experiments, one is to be open-ended which can be		
		selected by the teacher		
		Importance of lab safety – Burns, Eye accidents, Cuts,		
		gas poisoning, Electric shocks, Treatment of fires,		
		Precautions and preventive measures.		
		Weighing using electronic balance, Preparation of		
		standard solutions.		
		Neutralization Titrations		
		1. Strong acid – strong base.		
	I	2. Strong acid – weak base.		
		3. Weak acid – strong base.		
		Redox Titrations - Permanganometry:		
		4. Estimation of oxalic acid.		
	II	5. Estimation of Fe ₂₊ /FeSO ₄ .7H ₂ O/Mohr's salt		
		Redox Titrations - Dichrometry		
		6. Estimation of Fe ₂₊ /FeSO ₄ .7H ₂ O/Mohr's salt		
		using internal indicator.		
		7. Estimation of Fe ₂₊ /FeSO ₄ .7H ₂ O/Mohr's salt using		
		external indicator.		
		Redox Titrations - Iodimetry and Iodometry:		
\mathbf{v}		8. Estimation of iodine.		
		9. Estimation of copper		
		Open-ended experiments - Suggestions		
		Iodometry: Estimation of chromium.		
	III	Determination of acetic acid content in vinegar by		
		titration with NaOH.		
		Determination of alkali content in antacid tablets by		
		titration with HCl.		
		Determination of available chlorine in bleaching powder.		

References

- 1. C. N. R. Rao, *Understanding Chemistry*, Universities Press India Ltd., Hyderabad, 1999.
- 2. Manas Chanda, *Atomic Structure and Chemical Bonding*, 4th Edn., Tata McGraw Hill Publishing Company, Noida, 2007.

- 3. R. Puri, L. R. Sharma K. C. Kalia, *Principles of Inorganic Chemistry*, 31st Edn., Milestone Publishers and Distributors, New Delhi, 2013.
- 4. Satya Prakash, *Advanced Inorganic Chemistry*, Vol. 1, 5th Edn., S. Chand and Sons, New Delhi, 2012.
- 5. W. U. Malik, G. D. Tuli, R. D. Madan, *Selected Topics in Inorganic Chemistry*, S. Chand and Co., New Delhi, 2010.
- 6. J. D. Lee, *Concise Inorganic Chemistry*, 5th Edn., Oxford University Press, New Delhi, 2008.
- 7. V. K. Ahluwaliya, Green Chemistry, Narosa Publishing House, New Delhi, 2011.
- 8. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, *Vogel's Textbook of Quantitative Chemical Analysis*, 6th Edn., Pearson Education, Noida, 2013.
- 9. G. Svehla, *Vogel's Qualitative Inorganic Analysis*, 7th Edn., Prentice Hall, New Delhi, 1996

Mapping of COs with PSOs and Pos

	PSO	PSO	PSO	PSO	PSO	PSO	РО	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	1	2	3	4	5	6	7
CO	2				2		1				1		
1													
CO	2				2		1				1		
2													
CO	1				2		1				1		
3													
CO	1		1		2		1				1		
4													
CO	1				2		1				1		
5													
CO			2		1		1		1		2		
6													

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	✓	✓		✓
CO2	✓	✓		✓
CO3	✓	✓		✓
CO4	✓	✓		✓
CO5	✓	✓		✓
CO6		√	√	